Comparison between Beta Wavelets Neural Networks , RBF Neural Networks and Polynomial Approximation for 1 D , 2 D Functions Approximation

نویسندگان

  • Chokri Ben Amar
  • Adel M. Alimi
چکیده

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate ∧ f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network. Keywords—Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

منابع مشابه

Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks

The purpose of this paper is to explore the representation capability of radial basis function (RBF) neural networks. The main results are: 1) the necessary and sufficient condition for a function of one variable to be qualified as an activation function in RBF network is that the function is not an even polynomial, and 2) the capability of approximation to nonlinear functionals and operators b...

متن کامل

Comparison of the performances of neural networks specification, the Translog and the Fourier flexible forms when different production technologies are used

This paper investigates the performances of artificial neural networks approximation, the Translog and the Fourier flexible functional forms for the cost function, when different production technologies are used. Using simulated data bases, the author provides a comparison in terms of capability to reproduce input demands and in terms of the corresponding input elasticities of substitution esti...

متن کامل

Neural Networks for Pattern Classification and Universal Approximation

LIAO, YI. Neural Networks for Pattern Classification and Universal Approximation (Under the direction of Dr. Shu-Cherng Fang and Dr. Henry L. W. Nuttle). This dissertation studies neural networks for pattern classification and universal approximation. The objective is to develop a new neural network model for pattern classification, and relax the conditions for Radial-Basis Function networks to...

متن کامل

Approximation by Ridge Functions and Neural Networks

We investigate the efficiency of approximation by linear combinations of ridge functions in the metric of L2(B ) with Bd the unit ball in Rd. If Xn is an n-dimensional linear space of univariate functions in L2(I), I = [−1, 1], and Ω is a subset of the unit sphere Sd−1 in Rd of cardinality m, then the space Yn := span{r(x · ξ) : r ∈ Xn, ω ∈ Ω} is a linear space of ridge functions of dimension ≤...

متن کامل

Function Approximation by Polynomial Wavelets Generated

Wavelet functions have been successfully used in many problems as the activation function of feedforward neural networks ZB92],,STK92], PK93]. In this paper, a family of polynomial wavelets generated from powers of sigmoids is described which provides a robust way for designing neural network architectures. It is shown, through experimentation, that function members of this family can present a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006